双向循环神经网络示例
使用TensorFlow 2。0构建双向循环神经网络。
- 作者: Aymeric Damien
- 原项目: https://github.com/aymericdamien/TensorFlow-Examples/
BiRNN 概述
参考文献: 长短时记忆(Long Short Term Memory)^1,Sepp Hochreiter & Jurgen Schmidhuber, Neural Computation 9(8): 1735-1780, 1997.
MNIST 数据集概述
此示例使用手写数字的MNIST数据集。该数据集包含60,000个用于训练的示例和10,000个用于测试的示例。这些数字已经过尺寸标准化并位于图像中心,图像是固定大小(28x28像素),值为0到255。为简单起见,每个图像都被展平并转换为包含784个特征(28*28)的一维numpy数组。
为了使用递归神经网络对图像进行分类,我们将每个图像行都视为像素序列。由于MNIST的图像形状为28 * 28px,因此我们将为每个样本处理28个时间步长的28个序列。
更多信息请查看链接: http://yann.lecun.com/exdb/mnist/
from __future__ import print_function
import tensorflow as tf
from tensorflow.contrib import rnn
import numpy as np
# 导入MNIST数据
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
output:
Extracting /tmp/data/train-images-idx3-ubyte.gz
Extracting /tmp/data/train-labels-idx1-ubyte.gz
Extracting /tmp/data/t10k-images-idx3-ubyte.gz
Extracting /tmp/data/t10k-labels-idx1-ubyte.gz
# 训练参数
learning_rate = 0.001
training_steps = 10000
batch_size = 128
display_step = 200
# 网络参数
num_input = 28 # MNIST数据输入 (图像形状: 28*28)
timesteps = 28 # 时间步长
num_hidden = 128 # 隐藏层特征数
num_classes = 10 # 所有类别(数字 0-9)
# tf 图输入
X = tf.placeholder("float", [None, timesteps, num_input])
Y = tf.placeholder("float", [None, num_classes])
# 定义权重
weights = {
#隐含层权重值=> 2*n_hidden,因为前向+后向单元
'out': tf.Variable(tf.random_normal([2*num_hidden, num_classes]))
}
biases = {
'out': tf.Variable(tf.random_normal([num_classes]))
}
def BiRNN(x, weights, biases):
# 准备数据形状以符合rnn函数要求
# 当前数据输入形状: (batch_size, timesteps, n_input)
# 要求的形状: 形状为'timesteps'个张量的列表 (batch_size, num_input)
# 分解得到形状为'timesteps'个张量的列表形状为'timesteps'个张量的列表
x = tf.unstack(x, timesteps, 1)
# 使用tensorflow定义lstm单元
# 前向单元
lstm_fw_cell = rnn.BasicLSTMCell(num_hidden, forget_bias=1.0)
# 后向单元
lstm_bw_cell = rnn.BasicLSTMCell(num_hidden, forget_bias=1.0)
# 得到lstm单元输出
try:
outputs, _, _ = rnn.static_bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, x,
dtype=tf.float32)
except Exception: # 旧的TensorFlow版本只返回输出,而不是状态
outputs = rnn.static_bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, x,
dtype=tf.float32)
# 线性激活,使用rnn内部循环最后的输出
return tf.matmul(outputs[-1], weights['out']) + biases['out']
logits = BiRNN(X, weights, biases)
prediction = tf.nn.softmax(logits)
# 定义损失和优化器
loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
logits=logits, labels=Y))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss_op)
# 评估模型(测试时,禁用dropout)
correct_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# 初始化变量(即分配它们的默认值)
init = tf.global_variables_initializer()
# 开始训练
with tf.Session() as sess:
# 运行初始化
sess.run(init)
for step in range(1, training_steps+1):
batch_x, batch_y = mnist.train.next_batch(batch_size)
# 改变数据形状以获得28个元素的28个序列
batch_x = batch_x.reshape((batch_size, timesteps, num_input))
# 运行优化操作 (反向传播)
sess.run(train_op, feed_dict={X: batch_x, Y: batch_y})
if step % display_step == 0 or step == 1:
# 计算批损失和准确率
loss, acc = sess.run([loss_op, accuracy], feed_dict={X: batch_x,
Y: batch_y})
print("Step " + str(step) + ", Minibatch Loss= " + \
"{:.4f}".format(loss) + ", Training Accuracy= " + \
"{:.3f}".format(acc))
print("Optimization Finished!")
# 计算128个mnist测试图像的准确率
test_len = 128
test_data = mnist.test.images[:test_len].reshape((-1, timesteps, num_input))
test_label = mnist.test.labels[:test_len]
print("Testing Accuracy:", \
sess.run(accuracy, feed_dict={X: test_data, Y: test_label}))
output:
Step 1, Minibatch Loss= 2.6218, Training Accuracy= 0.086
Step 200, Minibatch Loss= 2.1900, Training Accuracy= 0.211
Step 400, Minibatch Loss= 2.0144, Training Accuracy= 0.375
Step 600, Minibatch Loss= 1.8729, Training Accuracy= 0.445
Step 800, Minibatch Loss= 1.8000, Training Accuracy= 0.469
Step 1000, Minibatch Loss= 1.7244, Training Accuracy= 0.453
Step 1200, Minibatch Loss= 1.5657, Training Accuracy= 0.523
Step 1400, Minibatch Loss= 1.5473, Training Accuracy= 0.547
Step 1600, Minibatch Loss= 1.5288, Training Accuracy= 0.500
Step 1800, Minibatch Loss= 1.4203, Training Accuracy= 0.555
Step 2000, Minibatch Loss= 1.2525, Training Accuracy= 0.641
Step 2200, Minibatch Loss= 1.2696, Training Accuracy= 0.594
Step 2400, Minibatch Loss= 1.2000, Training Accuracy= 0.664
Step 2600, Minibatch Loss= 1.1017, Training Accuracy= 0.625
Step 2800, Minibatch Loss= 1.2656, Training Accuracy= 0.578
Step 3000, Minibatch Loss= 1.0830, Training Accuracy= 0.656
Step 3200, Minibatch Loss= 1.1522, Training Accuracy= 0.633
Step 3400, Minibatch Loss= 0.9484, Training Accuracy= 0.680
Step 3600, Minibatch Loss= 1.0470, Training Accuracy= 0.641
Step 3800, Minibatch Loss= 1.0609, Training Accuracy= 0.586
Step 4000, Minibatch Loss= 1.1853, Training Accuracy= 0.648
Step 4200, Minibatch Loss= 0.9438, Training Accuracy= 0.750
Step 4400, Minibatch Loss= 0.7986, Training Accuracy= 0.766
Step 4600, Minibatch Loss= 0.8070, Training Accuracy= 0.750
Step 4800, Minibatch Loss= 0.8382, Training Accuracy= 0.734
Step 5000, Minibatch Loss= 0.7397, Training Accuracy= 0.766
Step 5200, Minibatch Loss= 0.7870, Training Accuracy= 0.727
Step 5400, Minibatch Loss= 0.6380, Training Accuracy= 0.828
Step 5600, Minibatch Loss= 0.7975, Training Accuracy= 0.719
Step 5800, Minibatch Loss= 0.7934, Training Accuracy= 0.766
Step 6000, Minibatch Loss= 0.6628, Training Accuracy= 0.805
Step 6200, Minibatch Loss= 0.7958, Training Accuracy= 0.672
Step 6400, Minibatch Loss= 0.6582, Training Accuracy= 0.773
Step 6600, Minibatch Loss= 0.5908, Training Accuracy= 0.812
Step 6800, Minibatch Loss= 0.6182, Training Accuracy= 0.820
Step 7000, Minibatch Loss= 0.5513, Training Accuracy= 0.812
Step 7200, Minibatch Loss= 0.6683, Training Accuracy= 0.789
Step 7400, Minibatch Loss= 0.5337, Training Accuracy= 0.828
Step 7600, Minibatch Loss= 0.6428, Training Accuracy= 0.805
Step 7800, Minibatch Loss= 0.6708, Training Accuracy= 0.797
Step 8000, Minibatch Loss= 0.4664, Training Accuracy= 0.852
Step 8200, Minibatch Loss= 0.4249, Training Accuracy= 0.859
Step 8400, Minibatch Loss= 0.7723, Training Accuracy= 0.773
Step 8600, Minibatch Loss= 0.4706, Training Accuracy= 0.859
Step 8800, Minibatch Loss= 0.4800, Training Accuracy= 0.867
Step 9000, Minibatch Loss= 0.4636, Training Accuracy= 0.891
Step 9200, Minibatch Loss= 0.5734, Training Accuracy= 0.828
Step 9400, Minibatch Loss= 0.5548, Training Accuracy= 0.875
Step 9600, Minibatch Loss= 0.3575, Training Accuracy= 0.922
Step 9800, Minibatch Loss= 0.4566, Training Accuracy= 0.844
Step 10000, Minibatch Loss= 0.5125, Training Accuracy= 0.844
Optimization Finished!
Testing Accuracy: 0.890625